Сегодня исполняется 40 лет с момента запуска Вояджера-1, а его брат-близнец Вояджер-2 — отпраздновал юбилей 16 днями ранее. Пользуясь уникальным парадом планет-гигантов (случающимся раз в 175 лет), им удалось перевернуть наше представление о Солнечной системе, и сделать столько открытий, сколько ни удалось сделать ни одному аппарату до, или после них.
На их счету числятся: обнаружение первой молнии и первого вулкана за пределами Земли; обнаружение первого криовулкана, и единственного объекта Солнечной системы (за исключением Земли), на поверхности которого могут существовать жидкие моря; открытие 3 спутников Юпитера, 4 спутников Сатурна, 11 спутников Урана и 6 спутников Нептуна; определение рекордсменов Солнечной системы: по силе магнитного поля, скорости ветров, альбедо поверхности, массе среди спутников; открытие границ ударной волны и гелиопаузы у солнечной гелиосферы.
Без преувеличения можно сказать, что эти два аппарата — показали нам то что Солнечная система вовсе не такая безжизненная, как нам казалось. И проложили путь для плеяды новых аппаратов, которые отправились изучать то, что не до конца удалось изучить Вояджерам.
Предыстория
Летом 1961 года аспирант Калифорнийского университета в Лос-Анджелесе Майкл Минович приступил к поиску решения задачи трёх тел. Он использовал для этой цели принадлежащий университету IBM 7090 — мощнейший компьютер, из существовавших на тот момент. К концу лета ему удалось установить что при определённых условиях встречи с планетой, космический аппарат получает прибавку к скорости, а при других — её теряет. В ходе стажировки в Лаборатории реактивного движения (далее JPL) летом следующего года он убедил своего начальника выдать ему более точные данные положения планет, и его расчёты подтвердились.
В итоге 1 июля 1972 году предпочтение было отдано в три раза более дешёвому проекту Маринер-Юпитер-Сатурн 77, в котором осталось только три аппарата. А в 1975 году миссия Вояджера-3 к Юпитеру и Урану была также отменена. Таким образом упоминания об Уране, Нептуне и Плутоне — были полностью убраны из программы, а длительность программы — сократилась до 5 лет.
Однако NASA пошла на хитрость: хотя оба аппарата официально и предназначался исключительно для исследования Юпитера, Сатурна и его спутника Титана, но разработчики аппаратов изначально проектировали их с расчётом на то, что они смогут добраться в рабочем состоянии до дальних планет: траектория Вояджера-1 позволяла уже в ходе полёта выбрать между исследованиями Титана или Плутона, а страховавший его Вояджер-2, в случае если собрат отрабатывал свою исследовательскую программу без сбоев, мог отправиться на встречу с Ураном и Нептуном. В ходе подготовки программы были рассмотрены 10 тыс. возможных траекторий, прежде чем две из них стали утверждёнными траекториями аппаратов.
Цветной вариант
Система связи: так как разработчики изначально рассчитывали что их аппараты должны достичь дальних границ Солнечной системы, антенны занимают ключевое место в аппаратах: диаметр их составляет 3,66 м, а сами они состоят из алюминиевого ядра покрытого смесью графита и эпоксидной смолы.
Команды с Земли передаются в S-радиодиапазоне на один из двух дублированных приёмников, а для передачи данных на Землю также используется ещё и передатчики X-диапазона. Один S-передатчик и оба X-передатчика используют лампы бегущей волны в качестве усилителя. Мощности усилителей составляют 9,4 и 21,3 Вт, при этом единовременно может работать только один из приёмников или передатчиков.
Изначально система связи была рассчитана на скорость передачи 115,2 кбит/с у Юпитера, и 44,8 кбит/с у Сатурна с вероятностью битовых ошибок 5*10-3 (что обеспечивалось кодами коррекции Рида-Соломона). Для связи у Урана и Нептуна — скорость связи упала ещё, и для передачи изображений потребовалось их сжатие, так что ошибки при передаче данных стали ещё критичнее, и поверх кодов Рида-Соломона добавили свёрточные коды (это обеспечивало вероятностью битовых ошибок 10-6 при небольшом увеличении вычислительной сложности).
Источник энергии состоял из трёх термоэлектрический генераторов MHW (подобные использовались только на спутниках LES 8/9), и имеющих 40,6 см в диаметре при длине в 51 см. Вес каждого из них составляет 37,7 кг (включая около 4,5 кг плутония-238), а мощность была больше 156 Вт на старте (при около 2,4 кВт тепловых).
Внешний вид:
Система ориентации включает в себя 16 однокомпонентных двигателей ориентации (работающих на разложения гидразина) с тягой всего в 85 грамм каждый; три гироскопа с точностью в одну десятитысячную долю градуса (один из которых был запасным); датчики Канопуса и Солнца (который размещался в отверстии антенны):
«64<s>0</s> килобайт хватит всем» подумали разработчики, и сделали оперативную память аппаратов состоящей из 4 тыс. 18-битных слов (примерно 69,63 Кбайт). Задающий генератор процессора работает на частоте 4 МГц, но тактовая частота самого процессора — составляет только 250 кГц, при этом он может выполнять только 8 тыс. операций в секунду. В момент запуска аппаратов из доступных 4 тыс. слов — свободными оставались только два, но при пролёте Урана и Нептуна — ситуация ещё более усугубилась, так как в этот объём потребовалось впихнуть ещё код для исправления неровностей вращения платформы Вояджера-2.
Записывающее устройство: представляет из себя магнитофон с ременным приводом, и магнитной лентой шириной в пол дюйма (12,7 мм), и длиной в 328 м. Ширина ленты разделена на 8 полос, из которые единовременно может читаться только одна. Общий объём памяти составляет 536 млн бит (около 63,9 Мбайт) — этого достаточно для записи 100 фотографий с телевизионных камер. Скорость записи составляю 115,2 и 7,2 кбит/с, а чтения — 57,6; 33,6; 21,6 и 7,2 кбит/с.
Детектор заряженных частиц низкой энергии: он включает в себя шаговый двигатель, позволяющий детектору вращаться на 360°. Он был протестирован на 500 тыс. шагов (для того, чтобы он мог достичь Сатурна), теперь он выполнил их уже более 6 млн шагов.
Золотые пластинки: на них расположены записи композиций Бетховена, Моцарта, Стравинского и слепого Вилли Джонсона (общий список лежит здесь, а прослушать их можно тут); 116 изображений Земли, людей и животных; записи звуков ветра, грома, пение некоторых птиц и животных; записи приветствия на 55 языках и обращение Джимми Картера (являвшегося президентом США в тот момент); а также положение нашей Солнечной системы относительно 14 пульсаров. На обратной стороне нанесена инструкция о том как данные записи можно прослушать.
Запуск Вояджеров требовал использования самой мощной из существовавших на тот момент у NASA ракет: пятиступенчатой 633 тонной ракеты-носителя Titan IIIE, работавшей на 4-х разных компонентах топлива: ускоритель и второй разгонный блок являлись твердотопливными (но с разным составом), первая и вторая ступени заправлялись аэрозином и тетраоксидом диазота, а роль третьей ступени исполнял кислород-водородный разгонный блок «Центавр».
Мало кому известно что вся миссия могла завершиться огромным фиаско, ещё в первый месяц. При старте Вояджера-2 первые 4 ступени отработали превосходно: ракета-носитель по плану проработала 468 секунд, и включившийся спустя 4 секунды после отделения от неё «Центавр» проработав положенную ему 101 секунду перевёл аппарат на парковочную орбиту. Спустя 43 минуты он включился вновь, и проработав 339 секунд перевёл твёрдотопливный разгонный блок Star-37E с Вояджером-2 на отлётную траекторию. Далее в работу вступил бортовой компьютер Вояджера-2, включивший разгонный блок, который проработав 89 секунд, и вывел аппарат на траекторию встречи с Юпитером.
Но разделение Вояджера-2 и Star-37E, с последующим раскрытием штанг аппарата прошло не так гладко, как бы хотелось: сразу после этих манипуляций аппарат начал вращаться, а через 16 секунд после разделения основной AACS и вовсе отказался работать (так как оба CCS передали ему одновременно команду на подготовку двигателей ориентации). Это в итоге и спасло аппарат, так как у второго AACS не было сведений от гироскопов, и он начал ориентацию с нуля. Ориентацию таки удалось осуществить, но это заняло 3,5 часа, да и проблемы на этом не завершились: данные приборов говорили что одна из штанг оказалась раскрыта не до конца. Было принято решение подтолкнуть штангу чтобы она встала на замки, используя для этого разворот аппарата двигателями ориентации, совместно с отстрелом крышки спектрометра IRIS, но компьютер Вояджер-2 отменил эту команду, посчитав её опасной. К 1 сентября всё таки удалось установить, что штанга на самом деле находится на месте, и провести после стартовые проверки, так что у команды Вояджеров появилось несколько дней передышки между переведением Вояджера-2 в «спячку» и стартом Вояджера-1.
При старте Вояджера-1 наоборот, разделение и работа разгонных блоков была безукоризненна, а вот утечка окислителя на второй ступени Titan IIIE привела к тому, что она отключилась раньше положенного, и ракета-носитель недодала «Центавру» целых 165,8 м/с. Компьютер разгонного блока определил неисправность и продлил время работы при выходе на парковочную орбиту. Но на второе включение топлива разгонному блоку хватило впритык: на момент отключения двигателей, в «Центавре» оставалось топлива всего на 3,4 секунды работы. Если бы на этой ракете летел Вояджер-2 — разгонный блок отключился бы, не набрав необходимой скорости (при отлёте от Земли скорость Вояджера-2 должна была составлять 15,2 км/с, в то время как скорость Вояджера-1 — только 15,1 км/с).
18 сентября, в ходе калибровки приборов, Вояджер-1 сделал совместное фото Земли и Луны одним кадром (впервые среди автоматических аппаратов), расстояние до Земли уже составляло 11,66 млн км:
Задержка сигнала при связи аппаратов при пролёте Юпитера уже должна была составлять 38 минут, так что подготовить всё надо было заранее: если бы учёные ошиблись бы на какие-то доли градуса в положении камер — аппарат снял бы бескрайний космос, вместо Юпитера и его спутников. Так что обновление софта для повышения резкости изображения было загружено в аппараты ещё в конце августа 1978 года, а программа полёта аппаратов составлялась за несколько дней заранее.
Вояджер-1 начал делать первые снимки Юпитера 6 января 1979-го с интервалом в 2 часа, и их разрешение сразу превысило разрешение всех доступных фотографий Юпитера на тот момент. С 30 января аппарат перешёл на фотографирование с интервалом в 96 секунд, а 3 февраля стал делать мозаичные снимки 2×2 (так как размер Юпитера стал больше разрешения камеры). С 21 февраля он перешёл на мозаику 3×3, а максимальное сближение с Юпитером произошло 5 марта.
Вояджер-2 максимально сблизился с Юпитером 9 июля, и хотя самое «вкусное» досталось его собрату, а операторы провели его на вдвое большем расстоянии от Юпитера (стараясь его беречь) — второй аппарат не остался без открытий: он обнаружил 3 новых спутника и новое кольцо у Юпитера. По снимкам Ио (с которым он сблизился только на 1 млн км) удалось установить что поверхность спутника поменялась, так что вулканы Ио продолжали быть активны в промежутке между пролётами Вояджеров. Снимки Европы (сделанные с 206 тыс. км) показали удивительно гладкую поверхность льда, нарушаемые лишь в некоторых местах трещинами. В общей сложности аппараты получили почти 19 тыс. снимков Юпитера, его колец и спутников.
Сатурн оказался весьма холодной но неспокойной планетой: температура верхних слоёв его атмосферы составляла -191°C, и только у северного полюса температура поднималась до +10°C; а вот бушевавшие там ветра — достигали 1800 км/ч в области экватора. Снимки Вояджера-1 показали что орбита Энцелада проходит по наиболее плотным областям разреженного кольца Е Сатурна.
Но самым удивительным объектом в системе оказался Мимас, от которого аппарат пролетел в 88,44 тыс. км: 396-километровый в диаметре спутник удивительным образом напоминал своим 100-километровым кратером Звезду смерти из «Звёздных войн» (V эпизод которых вышел всего за полгода до пролёта Вояджером-1 Сатурна):
В общей сложности было получено около 16 тыс. снимков системы. После пролёта Сатурна платформу с научной аппаратурой заклинило уже на Вояджере-2. Каким-то чудом, это произошло уже после пролёта системы Сатурна, и спустя всего пару дней удалось установить, что платформа нехотя вращается при усиленной тяге двигателей (по всей видимости, закончилась смазка), так что миссию Вояджера-2 можно было продолжать.
Уран, Нептун и далее
Для целей ускорения связи с Вояджером-2 у Урана — 64-метровую и две 26-метровых тарелки сети DSN связали в единую сеть. Это было сделано впервые ради ускорения передачи данных, так как камеры аппарата должны были успеть сделать тысячи снимков системы Урана, а памяти аппарата хватало только на сотню из них, так что система связи оказалась узким местом.
До встречи 24 января 1986 года Вояджера-2 с Ураном практически всё, что было о нём известно — это то, что он вращается «на боку», имеет 9 колец и 5 спутников (даже период его обращения был неизвестен). В ходе пролёта аппарата число спутников разом увеличилось втрое, а к кольцам прибавилось два новых, при этом они сами оказались отличны от таковых же у Юпитера и Сатурна: данные говорили о том, что они моложе планеты и видимо сформировались в результате разрушения спутников приливными силами.
Длительность уранианского дня составляла 17 часов и 12 минут, а климат оказался совсем не жарким: средняя температура в атмосфере составляла -214° по Цельсию и удивительным образом выдерживалась практически точно на всей поверхности, от экватора до полюсов. Но самым удивительным открытием стало то, что Уран имеет магнитное поле в 60 раз большее чем у Земли, которое отстоит от центра планеты примерно на треть радиуса, и отклонено от оси вращения аж на 60° (для Земли этот показатель составляет только 10°). Такое странное поведение ранее не фиксировалось ни у одного тела в Солнечной системе.
Модернизация тарелки в Голдстоуне
«В каком-то смысле DSN и Вояджеры росли вместе» — говорит руководитель DSN Сюзанна Додд.
Нептун был последней планетой, с которой должен был встретиться Вояджер-2, поэтому было решено пройти невероятно близко рядом с планетой — всего в 5 тыс. км от его поверхности (это было менее трёх минут полёта при скорости аппарата). И данные передаваемые аппаратом того стоили: в центре фотографий Нептуна красовалось «большое тёмное пятно» размеры которого в 2 раза превышали Землю, которое представляло из себя атмосферный антициклон. Он был меньше большого красного пятна Юпитера, но всё равно было рекордным: скорости ветра вокруг пятна достигали 2400 км/ч!
К пролёту Нептуна стоимость проекта достигла 875 млн $, но 30 млн $ на первые два года расширенной межзвёздной миссии были выделены без раздумий, а миссии потребовалась уже четвёртая эмблема:
Схема съёмки:
Земля на красной линии справа, ниже центра фотографии. Размеры Земли на этом фото составляют 0,12 пикселя. Единственная причина, почему она ещё хоть как-то различима — это то, что она отражает достаточно света, чтобы быть заметной на фоне мрака космоса.
Речь Карла Сагана, посвящённая этой фотографии:
Изначально работники проекта боялись что камеры Вояджера могут быть повреждены из-за света Солнца, которое располагалось слишком близко к Земле с такого расстояния (Вояджер-1 на тот момент был немногим далее 6 млрд км от Земли) — собственно линии на этой фотографии, это как раз блики от Солнца. В 1989 году решение сделать фотографии было принято, но калибровки камер затянулись (так как тарелки DSN были заняты получением информации с Вояджера-2 пролетающего Нептун). После этого появились проблемы с тем, что сотрудников занимавшихся управлением камер Вояджеров уже успели перевести на другие проекты. Вступиться за идею «семейного портрета» даже пришлось тогдашнему руководителю NASA — Ричарду Трули.
17 февраля 1998 года Вояджер-1 стал самым далёким объектом созданным человеком, обойдя в этом звании Пионер-10. К сожалению Пионерам-10 и 11 оказалось не суждено передать информацию о границах гелиосферы Солнца: у Пионера-11 вышел из строя солнечный датчик, из-за чего он «потерялся» в космосе и не смог поддерживать направление своей остронаправленной антенны на Землю (это произошло 30 сентября 1995 года на расстоянии 6,5 млрд км). Пионер-10 проработал до последних своих резервов, но его слабеющий сигнал в конце концов не смогли принимать даже огромные тарелки DSN, и связь с ним была потеряна 23 января 2003 года на расстоянии 11,9 млрд км.
В феврале 2002 года Вояджер-1 вошёл в ударную волну гелиосферы Солнца, а 16 декабря 2004 года — пересёк её впервые среди созданных человеком аппаратов. 30 августа 2007 её пересёк и его собрат, а 6 сентября на Вояджере-2 было отключено записывающее устройство.
31 марта 2006 года радиолюбитель из Бохум (Германия) смог получить данные с Вояджера-1 при помощи 20-метровой тарелки, с применением техники накопления сигнала. Получение данных было подтверждено на станции DSN в Мадриде.
13 августа 2012 года Вояджер-2 побил рекорд продолжительности работы аппарата в космосе. Это был рекорд Пионера-6 который проработал в космосе 12 758 дней — хотя возможно он до сих пор работоспособен (с ним не пытались связаться с 8 декабря 2000 года). Может какие-нибудь энтузиасты решат с ним связаться, и он вернёт себе звание самого долгоживущего космического аппарата? Кто знает…
22 апреля 2010 года на Вояджере-2 обнаружились проблемы с научными данными. 17 мая JPL выяснила причину, которой оказался бит памяти оказавшийся в состоянии тиристорного защёлкивания. 23 мая ПО было переписано с таким расчётом, чтобы этот бит никогда не использовался.
25 августа 2012 года Вояджер-1 пересёк гелиопаузу (подтверждения этому были получены 9 апреля 2013), и оказался в межзвёздной среде. Вояджер-2 должен вскоре последовать за собратом и к этому «последнему рубежу».
Показания плотности космических лучей Вояджера-1 (сверху) и Вояджера-2 (снизу).
Как видно из графиков, оба Вояджера уже вступили в гелиослой отделяющий Солнечную систему от межзвёздной среды, а Вояджер-1 — уже успел из него выйти. Пики в начале графиков показывают повышенную радиацию у Юпитера (связанную с его активным спутником Ио), и Сатурна. Предполагалось (согласно изначальной 5-летней миссии) — что половину радиационной дозы Вояджеры получат именно пролетая Юпитер.
Текущий статус
Изначальную программу полёта рассчитанную на пять лет — они уже перевыполнили в 8 раз (впрочем это далеко до текущего рекорда Оппортьюнити в 53 раза, который всё ещё продолжает работать). Скорости Вояджеров составляют 17,07 км/с и 15,64 км/с соответственно. Их масса (после использования части топлива) составляет 733 и 735 кг. В РИТЭГах остаётся около 73% плутония-238, но выходная мощность питающая аппараты снизилась до 55% (с учётом деградации термоэлектрогенераторов) и составляет 249 Вт от изначальных 450-ти.
Из изначальных 11 приборов включенными остаются только 5: это MAG (магнетометр), LECP (детектор заряженных частиц низкой энергии), CRS (детектор космических лучей), PLS (детектор плазмы), PWS (приёмник плазменных волн). На Вояджере-1 периодически включают ещё UVS (ультрафиолетовый спектрометр).
В ближайшее время на аппаратах должны быть отключены гироскопы, а с 2020 года — придётся приступить уже к отключению некоторых из научных инструментов. Члены команды пока не знают как они поведут себя в условиях дикого холода космоса (так как запасных аппаратов, и даже отдельных их инструментов, которых бы можно было проверить в барокамере — на Земле не сохранилось). Возможно приборы останутся работоспособны в процессе отключения их обогревателей, и тогда момент отключения последних приборов удастся оттянуть с 2025 года до 2030-го.
По оценкам, Вояджер-2 должен выйти за пределы гелиосферы в пределах десятилетия. Точной даты назвать нельзя так как гелиосфера не идеально сферическая, а вытянутая под действием внешних сил межзвёздной среды. Так что Вояджеру-2 должно хватить времени выйти из ударной волны, чтобы приступить к изучению межзвёздного вещества (в точке отличной от собрата) и сделать с ним возможно даже не последнее своё открытие — форму солнечной гелиосферы.
Вояджер-1 должен отдалиться от Земли на один световой день к 2027 году, а Вояджер-2 — к 2035-му. После 2030 года аппараты перейдут в режим радиомаяков (не имея мощности поддерживать работу своих приборов) и проработают так до 2036 года, после чего замолкнут уже навсегда. Таким образом аппараты должны «выйти на пенсию» в возрасте 48-53 лет, а «дожить» они должны до возраста в 59 лет.
Вояджер-1 направляется в точку с координатами 35,55° эклиптической широты, и 260,78° эклиптической долготы, и должен через 40 тыс. лет сблизиться на 1,6 св. года со звездой AC +79 3888 созвездия Жирафа (эта звезда в свою очередь сближается с Солнцем, и в момент пролёта Вояджера-1 будет на расстоянии 3,45 св. лет от нас). Примерно в тот же момент, Вояджер-2 (двигающийся в направлении -47,46° эклиптической широты, и 310,89° эклиптической долготы), приблизится к звезде Росс 248 на расстояние 1,7 св. года, а спустя 296 тыс. лет с текущего момента пролетит в 4,3 св. года от Сириуса.
Руководитель проекта
«Мы всегда были в одном отказе от потери миссии» — говорит Сюзанна Додд
Эти аппараты стартовавшие во времена выхода 4-го эпизода «Звёздных войн» и «Близких контактов третьей степени» — пережили десятки неисправностей и 40 лет пребывания в вакууме при температуре чуть выше абсолютного нуля. Множество раз их миссия оказывалась под вопросом — даже до их непосредственного запуска. И не смотря ни на что, они всё ещё остаются в строю. Пожалуй в качестве гимна миссии нельзя найти ничего лучше, чем любимую композицию Марка Уотни из романа «Марсианин») — «Stayin’ alive» Bee Gees:
Ссылки:
Текущий статус миссии (дистанция и скорость относительно Земли, показания датчиков)
Текущее состояние DSN (с кем идёт связь в данный момент).
Данные по космическим лучам
Фотографии аппаратов и снимков, сделанных ими
Подробная статья об аппаратах на galcpase.spb.ru
Описание конструкции аппаратов
Описание вычислительной системы
Описание систем связи некоторых научных миссий (включая Вояджеры)